Bitcoin Compact Block Relay is an Upgrade to Reduce ...

Block Propagation Time?

I was wondering if there was some recent study or live data available to check bitcoin block propagation time? I've seen some that do 50% but I'd like to find something more complete, maybe 90% or more?
submitted by wandererli to Bitcoin [link] [comments]

Block propagation and orphaning in Bitcoin over time

Block propagation and orphaning in Bitcoin over time submitted by nullc to Bitcoin [link] [comments]

10-08 00:23 - 'That's why Satoshi created the 10 minute confirmation time. It allows for all the miners to agree on the next block. Block orphaning is a non-issue with long confirmation times. / There are also new block propagation pro...' by /u/juliushenkin removed from /r/Bitcoin within 127-137min

That's why Satoshi created the 10 minute confirmation time. It allows for all the miners to agree on the next block. Block orphaning is a non-issue with long confirmation times.
There are also new block propagation protocols like Avalanche that help with that non-issue.
Context Link
Go1dfish undelete link
unreddit undelete link
Author: juliushenkin
submitted by removalbot to removalbot [link] [comments]

Bitcoin will be fighting against centralization until the end of time. One reason: block propagation time will never reach zero. Details in this 3-minute video.

Bitcoin will be fighting against centralization until the end of time. One reason: block propagation time will never reach zero. Details in this 3-minute video. submitted by ChronosCrypto to Bitcoin [link] [comments]

Block propagation time over the history of bitcoin. Looks like 2seconds is the fastest the network can currently achieve

Block propagation time over the history of bitcoin. Looks like 2seconds is the fastest the network can currently achieve submitted by 5tu to BitcoinTechnology [link] [comments]

Block propagation and orphaning in Bitcoin over time

Block propagation and orphaning in Bitcoin over time submitted by ABitcoinAllBot to BitcoinAll [link] [comments]

Bitcoin will be fighting against centralization until the end of time. One reason: block propagation time will never reach zero. Details in this 3-minute video.

Bitcoin will be fighting against centralization until the end of time. One reason: block propagation time will never reach zero. Details in this 3-minute video. submitted by ABitcoinAllBot to BitcoinAll [link] [comments]

Bitcoin will be fighting against centralization until the end of time. One reason: block propagation time will never reach zero. Details in this 3-minute video.

Bitcoin will be fighting against centralization until the end of time. One reason: block propagation time will never reach zero. Details in this 3-minute video. submitted by ChronosCrypto to btc [link] [comments]

Block propagation time over the history of bitcoin. Looks like 2seconds is the fastest the network can currently achieve

Block propagation time over the history of bitcoin. Looks like 2seconds is the fastest the network can currently achieve submitted by HiIAMCaptainObvious to BitcoinAll [link] [comments]

Datavetaren on Twitter: "#bitcoin upgrades in pipeline: 1) CSV (Time locks) 2) Segregated Witness (Malleability) 3) Compact blocks(Fast propagation) 4) #LN"

Datavetaren on Twitter: submitted by blockologist to btc [link] [comments]

Question about block validation time and propagation /r/Bitcoin

Question about block validation time and propagation /Bitcoin submitted by BitcoinAllBot to BitcoinAll [link] [comments]

10-11 06:57 - 'Jesus... is that your understanding of the blocksize problem? Do you know nothing about block validation/signature verification times, propagation delays, selfish mining attacks? / What are they teaching you over in r/btc a...' by /u/globalredcoin removed from /r/Bitcoin within 0-5min

Jesus... is that your understanding of the blocksize problem? Do you know nothing about block validation/signature verification times, propagation delays, selfish mining attacks?
What are they teaching you over in /btc anyway?
Context Link
Go1dfish undelete link
unreddit undelete link
Author: globalredcoin
submitted by removalbot to removalbot [link] [comments]

Bitcoin's Compact Block Relay is an Upgrade to Reduce Block's Propagation Times - NEWSBTC

Bitcoin's Compact Block Relay is an Upgrade to Reduce Block's Propagation Times - NEWSBTC submitted by codiox to Bitcoin [link] [comments]

Datavetaren on Twitter: "#bitcoin upgrades in pipeline: 1) CSV (Time locks) 2) Segregated Witness (Malleability) 3) Compact blocks(Fast propagation) 4) #LN"

Datavetaren on Twitter: submitted by BitcoinAllBot to BitcoinAll [link] [comments]

Bitcoin's Compact Block Relay is an Upgrade to Reduce Block's Propagation Times - NEWSBTC

Bitcoin's Compact Block Relay is an Upgrade to Reduce Block's Propagation Times - NEWSBTC submitted by BitcoinAllBot to BitcoinAll [link] [comments]

ELI5 request: why can't max blocksize (as DOS safeguard) be "retargeted" just like difficulty, every n blocks, according to mempool size and block propagation times (e.g. reported by miners when they issue a block)? /r/Bitcoin

ELI5 request: why can't max blocksize (as DOS safeguard) be submitted by BitcoinAllBot to BitcoinAll [link] [comments]

3.5 months until downgrade to slower 11 minute block target

The downgrade on November 15 will radically change Bitcoin Cash to target a slower 11 minute and 15 second block interval for over 5 years.
Can we swerve in time to avoid this disaster?
Simple solution: Use Jonathan Toomim's ASERT proposal to drastically improve the DAA while still targeting 10 minute blocks intervals.
submitted by HenryCashlitt to btc [link] [comments]

A single global economy of FAIL

I had a lot of fun with Jo_Bones insane vomit yesterday, that retarded chimp is a special one for sure. He inspired me to write some satire of his delusional CSWesque rant. I list some hilarious quotes from him at the end as well from the comment chain.
The original delusional rant

If all governments could agree on any single thing at any point in time, it would be an unprecedented moment in history. A "unicorn moonshot" so to speak. If the unicorn moonshot were to manifest as every government suddenly desiring to throw their already digital currencies into complete disarray and chose a technically inferior and non-compliant product in the process, then you can bet your ass they would use BSV for their fiscal policies. At the moment, here is what came up when I googled Central Banks for the first time today. Here's what came up when I googled fractional reserves. I then googled what reconciled means, and after my eyes rolled back in to my head out of sheer inability to digest the information I was reading, I decided BSV was the blockchain to solve all of this because I personally think this thing is an awesome high-school comp sci project.

If every central bank suddenly decided to relinquish state control of their monetary policy, and instead decided that the security model of 7 amateur software developers paid by an ex-felon hiding in Antigua who controls the #11 cryptocurrency on coinmarketcap was the answer, we could have the opportunity to use a strictly worse version of our current banking software and IT infrastructure. Instant transactions between bank accounts you own? Screw that, welcome to 10 minute block times! Did you fat finger that bill payment to the wrong sender? Too bad, it's gone forever! Welcome to immutability! It's a feature not a bug!

If you extrapolate how bad this is, suddenly taxes would be lower because digital monetary transactions would come to a screeching halt. Can't pay taxes on money you don't have, right? Suck that statists! The world would benefit from one giant economy of scale even though that phrase makes no sense in this context, and in reality is another buzzword I just simply don't have the time to try to understand. I forgot to Google that one I guess. This means prices around the globe would be out of control because we'd have to revert to a primal barter system! My chicken for your box of peaches! The possibilities to fuck over literally the entire world are endless!

Additionally, there would now be a high degree of transparency to how poorly BSV scales, since blocks take hours to propagate at 1GB sizes and that would only represent the hourly transactions of a town of 10,000 people, which would inevitably lead everyone to understand what 99.99% (AKA the non-mentally retarded "subset" of the population) already know.

In the comments I decided to change potential use cases from the utter nonsense I listed above to a couple different things.
Here I am demonstrating that I know currency lives in a database today:
The point is that they centrally issue and control their own tokens on the bitcoin network. I don’t see what’s so hard to understand about this. They already issue tokens on their own network. It’s just a different database.
Here I am 7 comments later saying those databases don't allow for digital cash when I just stated they did.
Your SQL databases don’t really allow for digital cash.
Shit maybe token issuance on BSV won't work time to pivot to:
But bank transfers still take days between Europe and Asia and have high fees precisely because all the banks maintain their own networks.
Think of the possibilities guys. You totally can't do this today, right?
so they can (for example) sell a YouTube video directly to the whole world, for their native national token... on the bitcoin network.
Crap, maybe there are some good points there. At least Bitcoin can push transactions out in seconds despite having a 10 minute block time! And wait until you see the block times if anyone ever does try to send a billion tx in a second!
These hashes cost bitcoin, but you can sell billions of them per second.
What do you mean risks of minority hash rate on BSV? Nobody has ever done a 51% attack and not been arrested! THEY'LL LOSE THEIR MINING EQUIPMENT!
Except that it’s illegal to attack another chain, and it’s public, and traceable and the punishment would be your company loses all its mining equipment.
I'm running out of use cases since they're getting shot down so fast. Here's a good one. Why pay $80 a month for internet in 1 transaction, when you can pay for internet 1.7trillion times every month for every data packet you get?
And the advantage of sending 0.0011p to someone might be that they’re providing a service to you, like a data packet.
But think of all the UnIqUe AnD gReAt FeAtUrEs on BSV. Really cutting edge stuff that SQL Server doesn't have due to being obsolete in the 90s, like the ability to append only instead of modify data elements! Also, watch the blockchain desync if you ever tried 1billion tx/sec!
The network scales to handle billions of TX/sec and the ledger is append only so it matches the criteria for keeping accurate records and/or updating them as needs be.
Time to pivot again since I'm being dismantled at every turn. What haven't I mentioned yet?
you haven’t solved the issue of the US dollar being the worlds default currency on which global trade relies.
Here is me doing my best Craig Wright technobabble nonsense impression. I know this is technically English but the words being strung together make no sense!
Once again you’ve really missed the point of all this. A data commodity that comes about through consensus of the network on ‘what value is’ contains a fraction of every part of the global economy.
Time to revert to some Craig Wright technobabble bullshit again:
Those in charge of producing dollars ultimately have an unfair advantage over those who don’t and they can game the system.
That’s a peer to peer internet model where producers get paid directly by consumers for the data they consume and miners get paid according to how fast and how efficiently and how accurately they can deliver the data.

Have I mentioned the fact I don't understand that blockchains are literally distributed databases?
Finally, you can send any kind of data in a bitcoin transaction. Not just fiat currencies issued by a government but audio, video, text, a webpage, etc.
And finally:
It’s very smart. Unlike you.
My transformation is complete.
submitted by pointedpointything to bsv [link] [comments]

Bitcoin Newcomers FAQ - Please read!

Welcome to the /Bitcoin Sticky FAQ

You've probably been hearing a lot about Bitcoin recently and are wondering what's the big deal? Most of your questions should be answered by the resources below but if you have additional questions feel free to ask them in the comments.
It all started with the release of the release of Satoshi Nakamoto's whitepaper however that will probably go over the head of most readers so we recommend the following videos for a good starting point for understanding how bitcoin works and a little about its long term potential:
Some other great resources include, the Princeton crypto series and James D'Angelo's Bitcoin 101 Blackboard series.
Some excellent writing on Bitcoin's value proposition and future can be found at the Satoshi Nakamoto Institute.
Some Bitcoin statistics can be found here and here. Developer resources can be found here. Peer-reviewed research papers can be found here.
Potential upcoming protocol improvements and scaling resources here and here.
The number of times Bitcoin was declared dead by the media can be found here (LOL!)

Key properties of Bitcoin

Where can I buy bitcoins? and are helpful sites for beginners. You can buy or sell any amount of bitcoin (even just a few dollars worth) and there are several easy methods to purchase bitcoin with cash, credit card or bank transfer. Some of the more popular resources are below, also check out the bitcoinity exchange resources for a larger list of options for purchases.
Here is a listing of local ATMs. If you would like your paycheck automatically converted to bitcoin use Bitwage.
Note: Bitcoins are valued at whatever market price people are willing to pay for them in balancing act of supply vs demand. Unlike traditional markets, bitcoin markets operate 24 hours per day, 365 days per year. Preev is a useful site that that shows how much various denominations of bitcoin are worth in different currencies. Alternatively you can just Google "1 bitcoin in (your local currency)".

Securing your bitcoins

With bitcoin you can "Be your own bank" and personally secure your bitcoins OR you can use third party companies aka "Bitcoin banks" which will hold the bitcoins for you.
Note: For increased security, use Two Factor Authentication (2FA) everywhere it is offered, including email!
2FA requires a second confirmation code to access your account making it much harder for thieves to gain access. Google Authenticator and Authy are the two most popular 2FA services, download links are below. Make sure you create backups of your 2FA codes.
Google Auth Authy OTP Auth
Android Android N/A

Watch out for scams

As mentioned above, Bitcoin is decentralized, which by definition means there is no official website or Twitter handle or spokesperson or CEO. However, all money attracts thieves. This combination unfortunately results in scammers running official sounding names or pretending to be an authority on YouTube or social media. Many scammers throughout the years have claimed to be the inventor of Bitcoin. Websites like bitcoin(dot)com and the btc subreddit are active scams. Almost all altcoins (shitcoins) are marketed heavily with big promises but are really just designed to separate you from your bitcoin. So be careful: any resource, including all linked in this document, may in the future turn evil. Don't trust, verify. Also as they say in our community "Not your keys, not your coins".

Where can I spend bitcoins?

Check out spendabit or bitcoin directory for millions of merchant options. Also you can spend bitcoin anywhere visa is accepted with bitcoin debit cards such as the CashApp card. Some other useful site are listed below.
Store Product
Gyft Gift cards for hundreds of retailers including Amazon, Target, Walmart, Starbucks, Whole Foods, CVS, Lowes, Home Depot, iTunes, Best Buy, Sears, Kohls, eBay, GameStop, etc.
Spendabit, Overstock and The Bitcoin Directory Retail shopping with millions of results
ShakePay Generate one time use Visa cards in seconds
NewEgg and Dell For all your electronics needs, Coinbills, Piixpay,, Bylls,, Bitrefill, LivingRoomofSatoshi, Coinsfer, and more Bill payment
Menufy, Takeaway and Thuisbezorgd NL Takeout delivered to your door
Expedia, Cheapair, Destinia, Abitsky, SkyTours, the Travel category on Gyft and 9flats For when you need to get away
Cryptostorm, Mullvad, and PIA VPN services
Namecheap, Porkbun Domain name registration
Stampnik Discounted USPS Priority, Express, First-Class mail postage
Coinmap and AirBitz are helpful to find local businesses accepting bitcoins. A good resource for UK residents is at
There are also lots of charities which accept bitcoin donations.

Merchant Resources

There are several benefits to accepting bitcoin as a payment option if you are a merchant;
If you are interested in accepting bitcoin as a payment method, there are several options available;

Can I mine bitcoin?

Mining bitcoins can be a fun learning experience, but be aware that you will most likely operate at a loss. Newcomers are often advised to stay away from mining unless they are only interested in it as a hobby similar to folding at home. If you want to learn more about mining you can read more here. Still have mining questions? The crew at /BitcoinMining would be happy to help you out.
If you want to contribute to the bitcoin network by hosting the blockchain and propagating transactions you can run a full node using this setup guide. If you would prefer to keep it simple there are several good options. You can view the global node distribution here.

Earning bitcoins

Just like any other form of money, you can also earn bitcoins by being paid to do a job.
Site Description
WorkingForBitcoins, Bitwage, Cryptogrind, Coinality, Bitgigs, /Jobs4Bitcoins, BitforTip, Rein Project Freelancing
Lolli Earn bitcoin when you shop online!
OpenBazaar,, Bitify, /Bitmarket, 21 Market Marketplaces
/GirlsGoneBitcoin NSFW Adult services
A-ads, Advertising
You can also earn bitcoins by participating as a market maker on JoinMarket by allowing users to perform CoinJoin transactions with your bitcoins for a small fee (requires you to already have some bitcoins.

Bitcoin-Related Projects

The following is a short list of ongoing projects that might be worth taking a look at if you are interested in current development in the bitcoin space.
Project Description
Lightning Network Second layer scaling
Blockstream, Rootstock and Drivechain Sidechains
Hivemind and Augur Prediction markets
Tierion and Factom Records & Titles on the blockchain
BitMarkets, DropZone, Beaver and Open Bazaar Decentralized markets
JoinMarket and Wasabi Wallet CoinJoin implementation
Coinffeine and Bisq Decentralized bitcoin exchanges
Keybase Identity & Reputation management
Abra Global P2P money transmitter network
Bitcore Open source Bitcoin javascript library

Bitcoin Units

One Bitcoin is quite large (hundreds of £/$/€) so people often deal in smaller units. The most common subunits are listed below:
Unit Symbol Value Info
bitcoin BTC 1 bitcoin one bitcoin is equal to 100 million satoshis
millibitcoin mBTC 1,000 per bitcoin used as default unit in recent Electrum wallet releases
bit bit 1,000,000 per bitcoin colloquial "slang" term for microbitcoin (μBTC)
satoshi sat 100,000,000 per bitcoin smallest unit in bitcoin, named after the inventor
For example, assuming an arbitrary exchange rate of $10000 for one Bitcoin, a $10 meal would equal:
For more information check out the Bitcoin units wiki.
Still have questions? Feel free to ask in the comments below or stick around for our weekly Mentor Monday thread. If you decide to post a question in /Bitcoin, please use the search bar to see if it has been answered before, and remember to follow the community rules outlined on the sidebar to receive a better response. The mods are busy helping manage our community so please do not message them unless you notice problems with the functionality of the subreddit.
Note: This is a community created FAQ. If you notice anything missing from the FAQ or that requires clarification you can edit it here and it will be included in the next revision pending approval.
Welcome to the Bitcoin community and the new decentralized economy!
submitted by BitcoinFan7 to Bitcoin [link] [comments]

Bitcoin Fullnode Install Guide for Dummies ;-)

Bitcoin Fullnode Install Guide for Dummies ;-)
Feel free to stop at Level 0 or Level 1, which is fine. More advanced configs are offered to those with more tech savvy. This guide, obviously assumes a Windows 10 install, but other OSes work fine, just find a different guide. BTW, the "For Dummies" is a callback to a set of "tech" books in the 90's intended to be as easy as possible. It is in jest and not intended to insult the reader. Finally, if you dislike the formatting, a well formatted copy can be found here
There is a fairly small subset of Bitcoin users that run a full node. I think the idea of running a full node has gotten a bad rap over the years since there is so much talk about running on a Raspberry Pi, or getting zippy SSDs. Although all of this can be fun, it is often not really required at all. Here are some ways to run a full node starting with the very simple. I'll get into more complex configs, but these are all optional.

Tech Skill Level: 0 (the basics)

  1. Download Bitcoin Core
  2. Launch the downloaded installer and install the app
  3. Launch the installed "Bitcoin Core" app and let it run overnight
In many cases, thats it. If your running a new machine with a fairly good internet connection, 8 or 9 hours will be enough to complete the "Initial Block Download" (IBD). This may fill up your drive a bit, but again, on most new machines, 300 GB of space isn't that hard to come by.

Tech Skill Level: 1 (encrypted wallet)

One thing we left out in the level-0 exercise is encrypting your wallet. It's easy enough to do well, but a bit more difficult to do right. The main challenge is that humans generate really poor passwords. If you want a good password, the best way is to use something called "diceware". Basically, you just grab 4 or 5 dice and each throw of the dice represents a certain word on a special list. The throw {1,4,5,3,1} for example would be the word camping on the EFF-diceware-wordlist. So you repeat this a few times until you have a list of 8 or so words which becomes the passphrase you use to encrypt your wallet. Write it down, it is always hard to remember at first. So at level-1 your list becomes:
  1. Download Bitcoin Core
  2. Launch the downloaded installer and install the app
  3. Launch the installed "Bitcoin Core" app and let it run overnight
  4. Choose Encrypt Wallet from the Settings menu
  5. Enter your 8 word (or so) passphrase generated using the Diceware method

Wallet Encryption Dialog

Tech Skill Level: 2 (enable pruning if needed)

Though I said "300 GB of space isn't hard to come by", some times it actually is. If space is an issue, a simple way to fix it is to tell bitcoin to simple take less space. This is called "pruning" and can take that number from 300 GB down to below 5 GB. If you can't find 5 GB, then you'll have to read ahead to level-4 to add USB storage. But the good news is, enabling pruning is pretty easy, we just add another step to our working list:
  1. Download Bitcoin Core
  2. Launch the downloaded installer and install the app
  3. Launch the installed "Bitcoin Core" app and let it run overnight
  4. Do the wallet encryption steps here if you wish
  5. Choose Options from the Settings menu
  6. Choose Prune block storage to: and select the max size for the blocks to use
  7. Exit and restart the bitcoin application for the changes to take effect

Pruning Dialog
Note, even setting this to 1 GB will still leave you with about a 4.5 GB install. The blocks take up a lot of space, but the chainstate and other folders eat up at least 3.5 GB and they can't be pruned. Also, be aware, to disable pruning requires you to perform the entire IBD again. While pruned some other functions my be disabled as well, so just know that pruning does limit some functionality.

Tech Skill Level: 3 (verify the installer)

Although this is arguably something that should be done at level-0, some find the intricacies of comparing hash (thumbprint) values to be tedious and beyond the scope of a beginner. You will find these types of hash compares suggested quite often as a way to prevent running tainted programs. Programs are often tainted by bad disk or network performance, but most often, taint is malicious code inserted by viruses or malware. This is a way to guard yourself against those types of attacks.
What I cover here is a very basic comparison on the certificate, but a more thorough verification advised by mosts uses a program called Gpg4Win, and is beyond the scope of this beginners guide. But regardless, most users should strive to do this minimum level of validation.
  1. Download Bitcoin Core
  2. Launch the downloaded installer
  3. When prompted "Do you want to allow..." click Show more details
  4. In the details section select Show information about the publisher's certificate
  5. In the certificate window select the Details tab
  6. In the Details tab Subject should start with "CN = Bitcoin Core Code Signing Association"
  7. Ensure Thumbprint in Details reads ea27d3cefb3eb715ed214176a5d027e01ba1ee86
  8. If the checks pass, click OK to exit the certificate window and Yes to allow the installer to run.
  9. Launch the installed "Bitcoin Core" app and let it run overnight
  10. Do the wallet encryption steps here if you wish
  11. Do the optional pruning steps here if you wish

Certification Validation Windows
Note: The certificate used to sign the current Bitcoin installer is only valid from March 2020 to March 2021. After that point the thumbprint on the certificate will change. This is by design and intentional. If your reading this post after March 2021, then it is understood that the thumbprint has changed.

Tech Skill Level: 4 (use secondary storage)

We glossed over the "new machine with fairly good internet" part. Truth be known many people do not have fairly new machines, and find the IBD to take longer than the "over night" best wishes. For most people the slowdown is the disk access when calculating what is called chainstate. This requires fast random reads and writes to the disk. If you have an SSD disk, this will be no problem, but if you have a non-SSD "spinning" disk, random writes are always slow. Though an SSD will speed things up, they are pricey, so a nice middle ground may be a simple high-end USB key drive. You can get some with 10 to 15 MB/s random writes for $20 on Amazon. This is usually a order of magnitude faster than a "spinning" disk. And with pruning (see level-2), a small USB drive should be fine.
Once you decide on a drive, the tricky part will be to enable external storage. It requires editing a configuration file and adding a line. First, we want to create a directory on the key drive. You will need to determine the drive letter of your USB key drive. For the sake of this example, we will assume it is D:, but you must determine this yourself and correct the example. Once you know the drive letter, create a blank folder on the drive called Bitcoin. So for this example, creating Bitcoin on drive D: will create the path D:\Bitcoin. Once done, assuming that D: is your drive, here are the new steps including the edit of the configuration file:
  1. Download Bitcoin Core
  2. Launch the installer, verify it, then run it
  3. Launch the installed "Bitcoin Core" app and let it run overnight
  4. Do the wallet encryption steps here if you wish
  5. Do the optional pruning steps here if you wish
  6. Launch "Notepad" by typing "Notepad.exe" in the windows search bar then click Open
  7. Type the line datadir=D:\Bitcoin (depending on your drive letter) in the blank file
  8. Choose Save from the File menu in notepad
  9. Type %APPDATA%\Bitcoin\bitcoin.conf (note the percent signs) in the File name box
  10. Select All Files from the Save as type dropdown
  11. Click the Save button and overwrite the file if prompted
  12. Exit and restart the bitcoin application for the changes to take effect

Save As Dialog
Now that you've reached this level of technical expertise, there are many new configuration options that you can begin to modify if you wish. Most configuration data is contained in the bitcoin.conf file and learning how to maintain it is a key step for a node operator.

Tech Skill Level: 5 (all other customizations)

Here's a short list of various things you can ADD to your bitcoin.conf file. You generally just add a new line for each configuration settings.
  • addresstype=bech32
  • changetype=bech32
The addresstype / changetype allows your wallet to use the native-segwit (bech32) format. This is the most efficient and inexpensive way to spend bitcoin, and is a recommended configuration. The default uses something called p2sh-segwit which is more compatible with older wallets, but more expensive to spend.
  • minrelaytxfee=0.00000011
Changing the minrelaytxfee setting allows you to help propagate lower fee transactions. It will require more memory but TXN memory is capped at 300 MB by default anyways, so if you have enough memory, it is a good setting to choose.
  • dbcache=2048
The dbcache setting controls how many MB of memory the program will use for the chainstate database. Since this is a key bottleneck in the IBD, setting this value high (2048 MB) will greatly speed up the IBD, assuming you have the memory to spare
  • blocksdir=C:\Bitcoin
  • datadir=D:\Bitcoin
In level-4 we discussed moving the datadir to a fast external storage, but the majority of the space used for bitcoin is the blocks directory (blocksdir). Although you should always use for fastest storage for datadir, you are free to use slow storage for blocksdir. So if you only want to consume a small amount of your SSD (assumed D:) then you can keep your blocks on your slow "spinning" drive.
  • upnp=1
One of the harder challenges you may face running a node, is to get incoming connections. If you are lucky, you may find that your firewall and network HW support the uPnP protocol. If they do, this setting will allow bitcoin to configure uPnP to allow incoming connections to your node. Other methods exist to make your node reachable, but they are well beyond the scope of this guide.
submitted by brianddk to Bitcoin [link] [comments]

A new whitepaper analysing the performance and scalability of the Streamr pub/sub messaging Network is now available. Take a look at some of the fascinating key results in this introductory blog

A new whitepaper analysing the performance and scalability of the Streamr pub/sub messaging Network is now available. Take a look at some of the fascinating key results in this introductory blog

Streamr Network: Performance and Scalability Whitepaper
The Corea milestone of the Streamr Network went live in late 2019. Since then a few people in the team have been working on an academic whitepaper to describe its design principles, position it with respect to prior art, and prove certain properties it has. The paper is now ready, and it has been submitted to the IEEE Access journal for peer review. It is also now published on the new Papers section on the project website. In this blog, I’ll introduce the paper and explain its key results. All the figures presented in this post are from the paper.
The reasons for doing this research and writing this paper were simple: many prospective users of the Network, especially more serious ones such as enterprises, ask questions like ‘how does it scale?’, ‘why does it scale?’, ‘what is the latency in the network?’, and ‘how much bandwidth is consumed?’. While some answers could be provided before, the Network in its currently deployed form is still small-scale and can’t really show a track record of scalability for example, so there was clearly a need to produce some in-depth material about the structure of the Network and its performance at large, global scale. The paper answers these questions.
Another reason is that decentralized peer-to-peer networks have experienced a new renaissance due to the rise in blockchain networks. Peer-to-peer pub/sub networks were a hot research topic in the early 2000s, but not many real-world implementations were ever created. Today, most blockchain networks use methods from that era under the hood to disseminate block headers, transactions, and other events important for them to function. Other megatrends like IoT and social media are also creating demand for new kinds of scalable message transport layers.

The latency vs. bandwidth tradeoff

The current Streamr Network uses regular random graphs as stream topologies. ‘Regular’ here means that nodes connect to a fixed number of other nodes that publish or subscribe to the same stream, and ‘random’ means that those nodes are selected randomly.
Random connections can of course mean that absurd routes get formed occasionally, for example a data point might travel from Germany to France via the US. But random graphs have been studied extensively in the academic literature, and their properties are not nearly as bad as the above example sounds — such graphs are actually quite good! Data always takes multiple routes in the network, and only the fastest route counts. The less-than-optimal routes are there for redundancy, and redundancy is good, because it improves security and churn tolerance.
There is an important parameter called node degree, which is the fixed number of nodes to which each node in a topology connects. A higher node degree means more duplication and thus more bandwidth consumption for each node, but it also means that fast routes are more likely to form. It’s a tradeoff; better latency can be traded for worse bandwidth consumption. In the following section, we’ll go deeper into analyzing this relationship.

Network diameter scales logarithmically

One useful metric to estimate the behavior of latency is the network diameter, which is the number of hops on the shortest path between the most distant pair of nodes in the network (i.e. the “longest shortest path”. The below plot shows how the network diameter behaves depending on node degree and number of nodes.

Network diameter
We can see that the network diameter increases logarithmically (very slowly), and a higher node degree ‘flattens the curve’. This is a property of random regular graphs, and this is very good — growing from 10,000 nodes to 100,000 nodes only increases the diameter by a few hops! To analyse the effect of the node degree further, we can plot the maximum network diameter using various node degrees:
Network diameter in network of 100 000 nodes
We can see that there are diminishing returns for increasing the node degree. On the other hand, the penalty (number of duplicates, i.e. bandwidth consumption), increases linearly with node degree:

Number of duplicates received by the non-publisher nodes
In the Streamr Network, each stream forms its own separate overlay network and can even have a custom node degree. This allows the owner of the stream to configure their preferred latency/bandwidth balance (imagine such a slider control in the Streamr Core UI). However, finding a good default value is important. From this analysis, we can conclude that:
  • The logarithmic behavior of network diameter leads us to hope that latency might behave logarithmically too, but since the number of hops is not the same as latency (in milliseconds), the scalability needs to be confirmed in the real world (see next section).
  • A node degree of 4 yields good latency/bandwidth balance, and we have selected this as the default value in the Streamr Network. This value is also used in all the real-world experiments described in the next section.
It’s worth noting that in such a network, the bandwidth requirement for publishers is determined by the node degree and not the number of subscribers. With a node degree 4 and a million subscribers, the publisher only uploads 4 copies of a data point, and the million subscribing nodes share the work of distributing the message among themselves. In contrast, a centralized data broker would need to push out a million copies.

Latency scales logarithmically

To see if actual latency scales logarithmically in real-world conditions, we ran large numbers of nodes in 16 different Amazon AWS data centers around the world. We ran experiments with network sizes between 32 to 2048 nodes. Each node published messages to the network, and we measured how long it took for the other nodes to get the message. The experiment was repeated 10 times for each network size.
The below image displays one of the key results of the paper. It shows a CDF (cumulative distribution function) of the measured latencies across all experiments. The y-axis runs from 0 to 1, i.e. 0% to 100%.
CDF of message propagation delay
From this graph we can easily read things like: in a 32 nodes network (blue line), 50% of message deliveries happened within 150 ms globally, and all messages were delivered in around 250 ms. In the largest network of 2048 nodes (pink line), 99% of deliveries happened within 362 ms globally.
To put these results in context, PubNub, a centralized message brokering service, promises to deliver messages within 250 ms — and that’s a centralized service! Decentralization comes with unquestionable benefits (no vendor lock-in, no trust required, network effects, etc.), but if such protocols are inferior in terms of performance or cost, they won’t get adopted. It’s pretty safe to say that the Streamr Network is on par with centralized services even when it comes to latency, which is usually the Achilles’ heel of P2P networks (think of how slow blockchains are!). And the Network will only get better with time.
Then we tackled the big question: does the latency behave logarithmically?
Mean message propagation delay in Amazon experiments
Above, the thick line is the average latency for each network size. From the graph, we can see that the latency grows logarithmically as the network size increases, which means excellent scalability.
The shaded area shows the difference between the best and worst average latencies in each repeat. Here we can see the element of chance at play; due to the randomness in which nodes become neighbours, some topologies are faster than others. Given enough repeats, some near-optimal topologies can be found. The difference between average topologies and the best topologies gives us a glimpse of how much room for optimisation there is, i.e. with a smarter-than-random topology construction, how much improvement is possible (while still staying in the realm of regular graphs)? Out of the observed topologies, the difference between the average and the best observed topology is between 5–13%, so not that much. Other subclasses of graphs, such as irregular graphs, trees, and so on, can of course unlock more room for improvement, but they are different beasts and come with their own disadvantages too.
It’s also worth asking: how much worse is the measured latency compared to the fastest possible latency, i.e. that of a direct connection? While having direct connections between a publisher and subscribers is definitely not scalable, secure, or often even feasible due to firewalls, NATs and such, it’s still worth asking what the latency penalty of peer-to-peer is.

Relative delay penalty in Amazon experiments
As you can see, this plot has the same shape as the previous one, but the y-axis is different. Here, we are showing the relative delay penalty (RDP). It’s the latency in the peer-to-peer network (shown in the previous plot), divided by the latency of a direct connection measured with the ping tool. So a direct connection equals an RDP value of 1, and the measured RDP in the peer-to-peer network is roughly between 2 and 3 in the observed topologies. It increases logarithmically with network size, just like absolute latency.
Again, given that latency is the Achilles’ heel of decentralized systems, that’s not bad at all. It shows that such a network delivers acceptable performance for the vast majority of use cases, only excluding the most latency-sensitive ones, such as online gaming or arbitrage trading. For most other use cases, it doesn’t matter whether it takes 25 or 75 milliseconds to deliver a data point.

Latency is predictable

It’s useful for a messaging system to have consistent and predictable latency. Imagine for example a smart traffic system, where cars can alert each other about dangers on the road. It would be pretty bad if, even minutes after publishing it, some cars still haven’t received the warning. However, such delays easily occur in peer-to-peer networks. Everyone in the crypto space has seen first-hand how plenty of Bitcoin or Ethereum nodes lag even minutes behind the latest chain state.
So we wanted to see whether it would be possible to estimate the latencies in the peer-to-peer network if the topology and the latencies between connected pairs of nodes are known. We applied Dijkstra’s algorithm to compute estimates for average latencies from the input topology data, and compared the estimates to the actual measured average latencies:
Mean message propagation delay in Amazon experiments
We can see that, at least in these experiments, the estimates seemed to provide a lower bound for the actual values, and the average estimation error was 3.5%. The measured value is higher than the estimated one because the estimation only considers network delays, while in reality there is also a little bit of a processing delay at each node.


The research has shown that the Streamr Network can be expected to deliver messages in roughly 150–350 milliseconds worldwide, even at a large scale with thousands of nodes subscribing to a stream. This is on par with centralized message brokers today, showing that the decentralized and peer-to-peer approach is a viable alternative for all but the most latency-sensitive applications.
It’s thrilling to think that by accepting a latency only 2–3 times longer than the latency of an unscalable and insecure direct connecion, applications can interconnect over an open fabric with global scalability, no single point of failure, no vendor lock-in, and no need to trust anyone — all that becomes available out of the box.
In the real-time data space, there are plenty of other aspects to explore, which we didn’t cover in this paper. For example, we did not measure throughput characteristics of network topologies. Different streams are independent, so clearly there’s scalability in the number of streams, and heavy streams can be partitioned, allowing each stream to scale too. Throughput is mainly limited, therefore, by the hardware and network connection used by the network nodes involved in a topology. Measuring the maximum throughput would basically be measuring the hardware as well as the performance of our implemented code. While interesting, this is not a high priority research target at this point in time. And thanks to the redundancy in the network, individual slow nodes do not slow down the whole topology; the data will arrive via faster nodes instead.
Also out of scope for this paper is analysing the costs of running such a network, including the OPEX for publishers and node operators. This is a topic of ongoing research, which we’re currently doing as part of designing the token incentive mechanisms of the Streamr Network, due to be implemented in a later milestone.
I hope that this blog has provided some insight into the fascinating results the team uncovered during this research. For a more in-depth look at the context of this work, and more detail about the research, we invite you to read the full paper.
If you have an interest in network performance and scalability from a developer or enterprise perspective, we will be hosting a talk about this research in the coming weeks, so keep an eye out for more details on the Streamr social media channels. In the meantime, feedback and comments are welcome. Please add a comment to this Reddit thread or email [[email protected]](mailto:[email protected]).
Originally published by. Henri at on August 24, 2020.
submitted by thamilton5 to streamr [link] [comments]

Don't blindly follow a narrative, its bad for you and its bad for crypto in general

I mostly lurk around here but I see a pattern repeating over and over again here and in multiple communities so I have to post. I'm just posting this here because I appreciate the fact that this sub is a place of free speech and maybe something productive can come out from this post, while bitcoin is just fucking censorship, memes and moon/lambo posts. If you don't agree, write in the comments why, instead of downvoting. You don't have to upvote either, but when you downvote you are killing the opportunity to have discussion. If you downvote or comment that I'm wrong without providing any counterpoints you are no better than the BTC maxis you despise.
In various communities I see a narrative being used to bring people in and making them follow something without thinking for themselves. In crypto I see this mostly in BTC vs BCH tribalistic arguments:
- BTC community: "Everything that is not BTC is shitcoin." or more recently as stated by adam on twitter, "Everything that is not BTC is a ponzi scheme, even ETH.", "what is ETH supply?", and even that they are doing this for "altruistic" reasons, to "protect" the newcomers. Very convenient for them that they are protecting the newcomers by having them buy their bags
- BCH community: "BTC maxis are dumb", "just increase block size and you will have truly p2p electronic cash", "It is just that simple, there are no trade offs", "if you don't agree with me you are a BTC maxi", "BCH is satoshi's vision for p2p electronic cash"
It is not exclusive to crypto but also politics, and you see this over and over again on twitter and on reddit.
My point is, that narratives are created so people don't have to think, they just choose a narrative that is easy to follow and makes sense for them, and stick with it. And people keep repeating these narratives to bring other people in, maybe by ignorance, because they truly believe it without questioning, or maybe by self interest, because they want to shill you their bags.
Because this is BCH community, and because bitcoin is censored, so I can't post there about the problems in the BTC narrative (some of which are IMO correctly identified by BCH community), I will stick with the narrative I see in the BCH community.
The culprit of this post was firstly this post by user u/scotty321 "The BTC Paradox: “A 1 MB blocksize enables poor people to run their own node!” “Okay, then what?” “Poor people won’t be able to use the network!”". You will see many posts of this kind being made by u/Egon_1 also. Then you have also this comment in that thread by u/fuck_____________1 saying that people that want to run their own nodes are retarded and that there is no reason to want to do that. "Just trust block explorer websites". And the post and comment were highly upvoted. Really? You really think that there is no problem in having just a few nodes on the network? And that the only thing that secures the network are miners?
As stated by user u/co1nsurf3r in that thread:
While I don't think that everybody needs to run a node, a full node does publish blocks it considers valid to other nodes. This does not amount to much if you only consider a single node in the network, but many "honest" full nodes in the network will reduce the probability of a valid block being withheld from the network by a collusion of "hostile" node operators.
But surely this will not get attention here, and will be downvoted by those people that promote the narrative that there is no trade off in increasing the blocksize and the people that don't see it are retarded or are btc maxis.
The only narrative I stick to and have been for many years now is that cryptocurrency takes power from the government and gives power to the individual, so you are not restricted to your economy as you can participate in the global economy. There is also the narrative of banking the bankless, which I hope will come true, but it is not a use case we are seeing right now.
Some people would argue that removing power from gov's is a bad thing, but you can't deny the fact that gov's can't control crypto (at least we would want them not to).
But, if you really want the individuals to remain in control of their money and transact with anyone in the world, the network needs to be very resistant to any kind of attacks. How can you have p2p electronic cash if your network just has a handful couple of nodes and the chinese gov can locate them and just block communication to them? I'm not saying that this is BCH case, I'm just refuting the fact that there is no value in running your own node. If you are relying on block explorers, the gov can just block the communication to the block explorer websites. Then what? Who will you trust to get chain information? The nodes needs to be decentralized so if you take one node down, many more can appear so it is hard to censor and you don't have few points of failure.
Right now BTC is focusing on that use case of being difficult to censor. But with that comes the problem that is very expensive to transact on the network, which breaks the purpose of anyone being able to participate. Obviously I do think that is also a major problem, and lightning network is awful right now and probably still years away of being usable, if it ever will. The best solution is up for debate, but thinking that you just have to increase the blocksize and there is no trade off is just naive or misleading. BCH is doing a good thing in trying to come with a solution that is inclusive and promotes cheap and fast transactions, but also don't forget centralization is a major concern and nothing to just shrug off.
Saying that "a 1 MB blocksize enables poor people to run their own" and that because of that "Poor people won’t be able to use the network" is a misrepresentation designed to promote a narrative. Because 1MB is not to allow "poor" people to run their node, it is to facilitate as many people to run a node to promote decentralization and avoid censorship.
Also an elephant in the room that you will not see being discussed in either BTC or BCH communities is that mining pools are heavily centralized. And I'm not talking about miners being mostly in china, but also that big pools control a lot of hashing power both in BTC and BCH, and that is terrible for the purpose of crypto.
Other projects are trying to solve that. Will they be successful? I don't know, I hope so, because I don't buy into any narrative. There are many challenges and I want to see crypto succeed as a whole. As always guys, DYOR and always question if you are not blindly following a narrative. I'm sure I will be called BTC maxi but maybe some people will find value in this. Don't trust guys that are always posting silly "gocha's" against the other "tribe".
EDIT: User u/ShadowOfHarbringer has pointed me to some threads that this has been discussed in the past and I will just put my take on them here for visibility, as I will be using this thread as a reference in future discussions I engage:
When there was only 2 nodes in the network, adding a third node increased redundancy and resiliency of the network as a whole in a significant way. When there is thousands of nodes in the network, adding yet another node only marginally increase the redundancy and resiliency of the network. So the question then becomes a matter of personal judgement of how much that added redundancy and resiliency is worth. For the absolutist, it is absolutely worth it and everyone on this planet should do their part.
What is the magical number of nodes that makes it counterproductive to add new nodes? Did he do any math? Does BCH achieve this holy grail safe number of nodes? Guess what, nobody knows at what number of nodes is starts to be marginally irrelevant to add new nodes. Even BTC today could still not have enough nodes to be safe. If you can't know for sure that you are safe, it is better to try to be safer than sorry. Thousands of nodes is still not enough, as I said, it is much cheaper to run a full node as it is to mine. If it costs millions in hash power to do a 51% attack on the block generation it means nothing if it costs less than $10k to run more nodes than there are in total in the network and cause havoc and slowing people from using the network. Or using bot farms to DDoS the 1000s of nodes in the network. Not all attacks are monetarily motivated. When you have governments with billions of dollars at their disposal and something that could threat their power they could do anything they could to stop people from using it, and the cheapest it is to do so the better
You should run a full node if you're a big business with e.g. >$100k/month in volume, or if you run a service that requires high fraud resistance and validation certainty for payments sent your way (e.g. an exchange). For most other users of Bitcoin, there's no good reason to run a full node unless you reel like it.
Shouldn't individuals benefit from fraud resistance too? Why just businesses?
Personally, I think it's a good idea to make sure that people can easily run a full node because they feel like it, and that it's desirable to keep full node resource requirements reasonable for an enthusiast/hobbyist whenever possible. This might seem to be at odds with the concept of making a worldwide digital cash system in which all transactions are validated by everybody, but after having done the math and some of the code myself, I believe that we should be able to have our cake and eat it too.
This is recurrent argument, but also no math provided, "just trust me I did the math"
The biggest reason individuals may want to run their own node is to increase their privacy. SPV wallets rely on others (nodes or ElectronX servers) who may learn their addresses.
It is a reason and valid one but not the biggest reason
If you do it for fun and experimental it good. If you do it for extra privacy it's ok. If you do it to help the network don't. You are just slowing down miners and exchanges.
Yes it will slow down the network, but that shows how people just don't get the the trade off they are doing
I will just copy/paste what Satoshi Nakamoto said in his own words. "The current system where every user is a network node is not the intended configuration for large scale. That would be like every Usenet user runs their own NNTP server."
Another "it is all or nothing argument" and quoting satoshi to try and prove their point. Just because every user doesn't need to be also a full node doesn't mean that there aren't serious risks for having few nodes
For this to have any importance in practice, all of the miners, all of the exchanges, all of the explorers and all of the economic nodes should go rogue all at once. Collude to change consensus. If you have a node you can detect this. It doesn't do much, because such a scenario is impossible in practice.
Not true because as I said, you can DDoS the current nodes or run more malicious nodes than that there currently are, because is cheap to do so
Non-mining nodes don't contribute to adding data to the blockchain ledger, but they do play a part in propagating transactions that aren't yet in blocks (the mempool). Bitcoin client implementations can have different validations for transactions they see outside of blocks and transactions they see inside of blocks; this allows for "soft forks" to add new types of transactions without completely breaking older clients (while a transaction is in the mempool, a node receiving a transaction that's a new/unknown type could drop it as not a valid transaction (not propagate it to its peers), but if that same transaction ends up in a block and that node receives the block, they accept the block (and the transaction in it) as valid (and therefore don't get left behind on the blockchain and become a fork). The participation in the mempool is a sort of "herd immunity" protection for the network, and it was a key talking point for the "User Activated Soft Fork" (UASF) around the time the Segregated Witness feature was trying to be added in. If a certain percentage of nodes updated their software to not propagate certain types of transactions (or not communicate with certain types of nodes), then they can control what gets into a block (someone wanting to get that sort of transaction into a block would need to communicate directly to a mining node, or communicate only through nodes that weren't blocking that sort of transaction) if a certain threshold of nodes adheres to those same validation rules. It's less specific than the influence on the blockchain data that mining nodes have, but it's definitely not nothing.
The first reasonable comment in that thread but is deep down there with only 1 upvote
The addition of non-mining nodes does not add to the efficiency of the network, but actually takes away from it because of the latency issue.
That is true and is actually a trade off you are making, sacrificing security to have scalability
The addition of non-mining nodes has little to no effect on security, since you only need to destroy mining ones to take down the network
It is true that if you destroy mining nodes you take down the network from producing new blocks (temporarily), even if you have a lot of non mining nodes. But, it still better than if you take down the mining nodes who are also the only full nodes. If the miners are not the only full nodes, at least you still have full nodes with the blockchain data so new miners can download it and join. If all the miners are also the full nodes and you take them down, where will you get all the past blockchain data to start mining again? Just pray that the miners that were taken down come back online at some point in the future?
The real limiting factor is ISP's: Imagine a situation where one service provider defrauds 4000 different nodes. Did the excessive amount of nodes help at all, when they have all been defrauded by the same service provider? If there are only 30 ISP's in the world, how many nodes do we REALLY need?
You cant defraud if the connection is encrypted. Use TOR for example, it is hard for ISP's to know what you are doing.
Satoshi specifically said in the white paper that after a certain point, number of nodes needed plateaus, meaning after a certain point, adding more nodes is actually counterintuitive, which we also demonstrated. (the latency issue). So, we have adequately demonstrated why running non-mining nodes does not add additional value or security to the network.
Again, what is the number of nodes that makes it counterproductive? Did he do any math?
There's also the matter of economically significant nodes and the role they play in consensus. Sure, nobody cares about your average joe's "full node" where he is "keeping his own ledger to keep the miners honest", as it has no significance to the economy and the miners couldn't give a damn about it. However, if say some major exchanges got together to protest a miner activated fork, they would have some protest power against that fork because many people use their service. Of course, there still needs to be miners running on said "protest fork" to keep the chain running, but miners do follow the money and if they got caught mining a fork that none of the major exchanges were trading, they could be coaxed over to said "protest fork".
In consensus, what matters about nodes is only the number, economical power of the node doesn't mean nothing, the protocol doesn't see the net worth of the individual or organization running that node.
Running a full node that is not mining and not involved is spending or receiving payments is of very little use. It helps to make sure network traffic is broadcast, and is another copy of the blockchain, but that is all (and is probably not needed in a healthy coin with many other nodes)
He gets it right (broadcasting transaction and keeping a copy of the blockchain) but he dismisses the importance of it
submitted by r0bo7 to btc [link] [comments]

Double spending and block propagation visualization in a bitcoin network Greg Maxwell: Advances in Block Propagation - YouTube Dr. Peter Rizun - Block Propagation and the Z-parameter Block Propagation Andrea Suisani - Block Propagation Using Xthin Empirical Results

Bitcoin block propagation dataset Open dataset containing block arrival times from the Bitcoin network from late 2018 until early 2019. About this project. This open dataset contains the arrival time of approximately 14810 blocks on the Bitcoin network between November 2018 and March 2019. The data was collected from 9 locations (AWS EC2 instances), each connected to approximately 700 nodes at ... Block deliv ery time in Bitcoin distribution network. Jelena Mi ˇ. si ´ c 1, V ojislav B. Mi ˇ. si ´ c 1, Xiaolin Chang 2, Saeideh G. Motlagh 1, and M. Zulfiker Ali 1. 1 Ryerson University, T ... improve the block propagation speed, it is proposed to make the block verification stage more efficient and to increase the number of connections. If we improve the accuracy of intern- ode propagation delay estimation in this research, it can be illustrated as another method to improve the propagation speed [5] [6]. Next, Coinscope [9] was investigated as the topology of the Bitcoin network ... Block validation speed may be important at some time in the distant future, but for now and the near future, the main bottlenecks are AcceptToMemoryPool performance and block propagation. Block Propagation on Network Plane: Bitcoin’s P2P network is formed of miner nodes where the nodes randomly connect with each other. Transactions and blocks are transmitted over this network by ...

[index] [25194] [28965] [4127] [4638] [33636] [42233] [2232] [19173] [9453] [15534]

Double spending and block propagation visualization in a bitcoin network

A not-boring full node, network visualizer, and BTC piggy bank! More pics on Twitter: @MatthewZipkin Tip the Bitcoin Block Clock... 1Ppifg52gpydbPshDyYo4mwWF... Slides: Greg Maxwell, Bitcoin Core developer and Blockstream CTO, spoke about the history and state o... Double spending and block propagation visualization in a bitcoin network Andrea Passaglia . Loading... Unsubscribe from Andrea Passaglia? Cancel Unsubscribe. Working... Subscribe Subscribed ... The Bitcoin Mempool, Difficulty Adjustment, Hashrate, Block Time, Block Reward, Transaction Fees and much more is explained simply in this video. Bitcoin onchain data: ... This is part 21 of the Blockchain tutorial explaining what a peer-to-peer network is and what propagation and latency means. These words are often used in th...